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FROM A THEORETICAL FRAMEWORK OF HUMAN EXPOSURE AND DOSE 
ASSESSMENT TO COMPUTATIONAL SYSTEM IMPLEMENTATION: THE MODELING 
ENVIRONMENT FOR TOTAL RISK STUDIES (MENTOR)

Panos G. Georgopoulos, Paul J. Lioy

Exposure Measurement and Assessment Science Division, Environmental and Occupational Health 
Sciences Institute (EOHSI), a Joint Institute of UMDNJ- Robert Wood Johnson Medical School and 
Rutgers University, Piscataway, New Jersey, USA

Georgopoulos and Lioy (1994) presented a theoretical framework for exposure analysis, incorporating multiple levels of
empirical and mechanistic information while characterizing/reducing uncertainties. The present review summarizes efforts
towards implementing that framework, through the development of a mechanistic source-to-dose Modeling ENvironment
for TOtal Risks studies (MENTOR), a computational toolbox that provides various modeling and data analysis tools to facili-
tate assessment of cumulative and aggregate (multipathway) exposures to contaminant mixtures.

MENTOR adopts a “Person Oriented Modeling” (POM) approach that can be applied to either specific individuals or to
populations/subpopulations of interest; the latter is accomplished by defining samples of “virtual” individuals that statisti-
cally reproduce the physiological, demographic, etc., attributes of the populations studied. MENTOR implementations cur-
rently incorporate and expand USEPA’s SHEDS (Stochastic Human Exposure and Dose Simulation) approach and consider
multiple exposure routes (inhalation, food, drinking water intake; non-dietary ingestion; dermal absorption). Typically, simu-
lations involve: (1) characterizing background levels of contaminants by combining model predictions and measurement
studies; (2) characterizing multimedia levels and temporal profiles of contaminants in various residential and occupational
microenvironments; (3) selecting sample populations that statistically reproduce essential demographics (age, gender, race,
occupation, education) of relevant population units (e.g., census tracts); (4) developing activity event sequences for each
member of the sample by matching attributes to entries of USEPA’s Consolidated Human Activity Database (CHAD);
(5) calculating intake rates for the sample population members, reflecting physiological attributes and activities pursued;
(6) combining intake rates from multiple routes to assess exposures; (7) estimating target tissue doses with physiologically
based dosimetry/toxicokinetic modeling.

The theoretical and conceptual framework of Georgopoulos and Lioy (1994) outlined the needs
and challenges facing the use of probabilistic source-to-dose analyses of exposure as an integral part
of environmental health risk assessments. The ideas and framework of the 1994 article led to work
towards the development of a modular, comprehensive, source-to-dose modeling system; this work
has been funded by a number of organizations, including ATSDR and USDOE (these and other
acronyms that appear throughout the article are expanded in Tables 1 and 2). In 1998, this devel-
opment was accelerated through the establishment of a “University Partnership Agreement (UPA)”
between USEPA’s National Exposure Research Laboratory (NERL) and the Environmental and
Occupational Health Sciences Institute (EOHSI), and these efforts resulted in the evolution of the
Modeling ENvironment for TOtal Risk studies (MENTOR). The conceptual framework underlying
the development of MENTOR is depicted schematically in Figure 1. This diagram represents an
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458 P. G. GEORGOPOULOS AND P. J. LIOY

expansion of the bi-directional modeling approach initially described in the 1994 article. Ongoing
and planned work will interface the currently operational source-to-dose analysis components of
MENTOR with a DOse-Response Information ANalysis system (DORIAN), that will incorporate
molecular and cellular level data (ebCTC 2005; Welsh and Georgopoulos 2005), as well as with a
REmediation Analysis (REA) system, that will facilitate the characterization of the impact of alterna-
tive remediation/control strategies on human exposure and risk. The overall goal of MENTOR is to
provide state-of-the-art tools that enhance quantitative risk assessments for individuals and popula-
tions and to identify critical variables for use in epidemiological investigations.

MENTOR, as a computational environment, has evolved from a prototype Exposure and Dose
Modeling and Analysis System (EDMAS) (Georgopoulos et al. 1997; Roy and Georgopoulos 1997;
Walia and Georgopoulos 1997) which provided a unified framework for linking biological processes

TABLE 1. List of acronyms that appear in this article

3MRA Multimedia, Multipathway, Multirecptor Risk Assessment, Version 3
ADIFOR/ADIC Automatic Differention for FORTRAN Code/Automatic Differention for C
AERMOD AMS/EPA Regulatory Model Improvement Committee Model
ANN Artificial Neural Network
ARAMS Adaptive Risk Assessment Modeling System
ATSDR Agency for Toxic Substances and Disease Registry
BMCMC Bayesian Markov Chain Monte Carlo
BME Bayesian Maximum Entropy
CALMET CALifornia METeorological model/photochemical model
CALPUFF CALifornia PUFF model
CAMx Comprehensive Air quality Model with extensions
CART Classification and Regression Tree
CATS Contaminants in Aquatic and Terrestrial ecoSystems
CMAQ Community Multiscale Air Quality model
EOHSI Environmental and Occupational Health Sciences Institute
EPANET Environmental Protection Agency water NETwork model
ERDEM Exposure Related Dose-Estimating Model
FACT Flow And Contaminant Transport
FEOM Fast Equivalent Operational Model
FLD Fisher’s Linear Discriminant
GMS Groundwater Modeling System
GRASS Geographic Resources Analysis Support System
HDMR High Dimensional Model Representation
HYPACT Hybrid Particle And Concentration Transport Model
ISC Industrial Source Complex model
KNN K-Nearest Neighbor
MCMC Markov Chain Monte Carlo
MENTOR Modeling ENvironment for TOtal Risk studies
MM5 Fifth-Generation NCAR/Penn State Mesoscale Model
MODFLOW MODular three-dimensional finite-difference ground-water FLOW model
PBTK Physiologically Based Toxicokinetic
PD Pharmacodynamic
QSAR Quantitative Structure Activity Relationships
RAMS Regional Atmospheric Modeling System
RPNN Robust Polynomial Neural Network
SHEDS Stochastic Human Exposure and Dose Simulation
SIMCA Soft Independent Modeling of Chemical Analogy
SMOKE Sparse Matrix Operator Kernel Emissions
SRSM Stochastic Response Surface Method
STRF Spatio-Temporal Random Field
SVM Support Vector Machines
TCE Trichloroethylene
USDOE US Department of Energy
USEPA US Environmental Protection Agency
VOC Volatile Organic Compound
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460 P. G. GEORGOPOULOS AND P. J. LIOY

(toxicokinetics) with environmental and microenvironmental processes and exposure models. The
first applications and performance tests of EDMAS included studies of exposures to benzene,
ozone, indoor air, chloroform, hazardous wastes, etc. involving inhalation as well as ingestion and
dermal contact.

The objective of the MENTOR project has been been to develop, apply and evaluate state-of-the-art
modeling methods for a wide range of environmental applications, that utilize existing models,
when available, or provide new approaches to “fill gaps” in the source-to-dose sequence. MENTOR
links state-of-the art predictive models of environmental fate/transport and of human exposure and
dose; these models are coupled with up-to-date national, regional, and local databases of environ-
mental, microenvironmental, biological, physiological, demographic, etc. parameters. Thus MENTOR
is not a “new model”; it is an evolving open computational toolbox, containing both “pre-existing”
and new tools, intended to facilitate consistent multiscale source-to-dose modeling of exposures to
multiple contaminants, for individuals and populations.

Two implementations of MENTOR are currently available; they both incorporate USEPA’s
Stochastic Human Exposure and Dose Simulation (SHEDS – Burke et al. 2001) approach for treat-
ing population activity patterns. MENTOR/SHEDS-1A (MENTOR/SHEDS for “One Atmosphere
(1A)” applications) characterizes simultaneous exposures to multiple atmospheric contaminants,
taking into account their physical and chemical interactions, for individuals and/or populations
(USEPA 2004a; Georgopoulos et al. 2005a, 2005b). MENTOR/SHEDS-4M quantifies aggregate and
cumulative exposures and doses of individuals and populations for Multiple co-occurring contami-
nants and Multimedia, Multipathway, Multiroute exposures “(4M)” (Georgopoulos et al. 2005c;
USEPA 2004b).

These implementations of MENTOR incorporate a range of “tools” for modeling environmental
and biological processes, for sensitivity and uncertainty analysis, and for formal model reduction.

Initial applications of MENTOR focused on diverse environmental health problems that affect
the US, including source-to-dose population exposures to co-occurring PM2.5, ozone and air toxics

FIGURE 1. The Modeling Environment for Total Risk (MENTOR) approach for integrated analysis and interpretation of human exposure
in a source-to-dose framework; components that are currently in development phase are identified in this diagram by a dashed line and
correspond to the Remedial Analysis (REA) and Dose-Response Information Analysis (DORIAN) systems.
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MENTOR 461

for Philadelphia, PA; source-to-dose modeling of multimedia population exposures to co-occurring
arsenic and TCE; outdoor (potential) regional ozone exposure modeling for the northeast US for
impact on regulatory accountability; exposures of populations to Hg/MeHg through food consump-
tion; children’s exposure to organophosphate pesticides; etc. Ongoing MENTOR studies include
simulations of the plume and the associated human exposures to contaminants released from the
fire and collapse of the World Trade Center on September 11, 2001. Many of these applications
are briefly discussed in the present review; for detailed information the reader is referred to docu-
ments that are available either in the peer-reviewed literature or publicly accessible via the web at
http://ccl.rutgers.edu.

BACKGROUND

In recent years numerous modeling tools were developed by various organizations to support
quantitative exposure analyses and assessments. As part of the development effort for the TRIM
(Total Risk Integrated Methodology) modeling system (USEPA 1999a), the USEPA conducted an
extensive review of models, available at the time, that were considered relevant to exposure assess-
ments. These models typically focus on a particular process or on certain components of the source-
to-dose sequence. Furtaw (2001) specifically reviewed exposure modeling activities at USEPA-NERL
and summarized developments regarding Models-3/Community Multiscale Air Quality (CMAQ)
model, SHEDS, ERDEM and FRAMES-3MRA. A technical report completed for the MENTOR project
(Johnson 2002) reviewed in detail the attributes and the evolution of comprehensive inhalation expo-
sure modeling systems that have been developed over the years. Included were NEM/pNEM (National
Exposure Model and Probabilistic National Exposure Model), APEX (Air Pollution Exposure) Model – a
component of TRIM, and HAPEM (Hazardous Air Pollutant Exposure Model) families of models.
Another review, focusing on “person-oriented” modeling and multimedia models for aggregate and
cumulative exposures (including Lifeline, CARES, Calendex, etc.) can be found in Price et al. (2003).

MENTOR has been designed to incorporate a wide range of the types of algorithms and data-
bases utilized in the models mentioned above, and in particular in the models under continuing
development at USEPA-NERL. The MENTOR toolbox is in fact an open and “flexible” system that
provides components for performing either simple (screening) or detailed (comprehensive) simula-
tions at various scales and levels of detail. For example, as mentioned earlier, the SHEDS methodology
developed by Özkaynak and coworkers (Burke et al. 2001) was modified, expanded to include bio-
logical process modeling, and incorporated into MENTOR. Included in MENTOR are also interac-
tive links with the Consolidated Human Activity Database (CHAD) (McCurdy et al. 2000) for
consistent definition of population characteristics and activity events needed to establish intensity
and patterns of exposure (Georgopoulos et al. 2005a, 2005c).

Consistent with the concepts presented previously by Georgopoulos and Lioy (1994), MENTOR
can be used for both “Individual Based Exposure Modeling” (IBEM) and “Population Based Expo-
sure Modeling” (PBEM) approaches. Both these approaches employ a “Person Oriented Modeling”
(POM) formulation, i.e. they are driven by the attributes and activities of the exposed “real” and/or
“virtual” individual(s). While IBEM implementations utilize the information relevant to “actual”
individuals (and produce exposure and dose estimates specific to each one of them), the PBEM
implementations focus on the statistical characterization of the exposures and doses of selected
populations (at the census tract, county, or state etc. level). Thus, the questions posed by any partic-
ular environmental health problem can be tailored to small sets of individuals potentially at risk or
to larger populations or subpopulations of interest.

Methods
The MENTOR Approach The “computational toolbox” of MENTOR (shown schematically in

Figure 2) contains modules that facilitate the exposure/risk assessor in performing the following 7
components/steps of a comprehensive probabilistic source-to-dose analysis (summarized schemati-
cally in Figure 3):
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462 P. G. GEORGOPOULOS AND P. J. LIOY

1. Estimation of the multimedia background levels of environmental contaminants (air, water,
soil, food, etc.), for the area/locations where the population of interest resides, through
extraction/processing of information from the outcomes of selected comprehensive environ-
mental models (such as USEPA’s Models-3/CMAQ for air pollutants; USEPA’s EPANET for
water-borne contaminants in municipal networks, USGS’s MODFLOW or USDOE’s FACT for
groundwater contaminant transport, etc.) and/or from measurements obtained in field stud-
ies. Tools utilized in these analyses include GIS (Geographic Information Systems; specifically
GRASS and ESRI’s ArcGIS) and RDBMS (Relational Database Management Systems, such as
MySQL and Oracle) based components. “Subgrid” (e.g. census tract or neighborhood scale)
interpolation/characterization of ambient information is performed through computational
tools that utilize spatiotemporal information from models and monitors in a SpatioTemporal
Random Field (STRF) or, more generally, a BME (Bayesian Maximum Entropy) framework, as
discussed in the following.

FIGURE 2. Components/modules of the MENTOR computational toolbox.
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MENTOR 463

2. Estimation of multimedia levels (indoor air, drinking water, soil/dust, food, etc. concentrations)
and temporal profiles of environmental contaminants in various microenvironments such as resi-
dences, offices, restaurants, vehicles, etc. are calculated through microenvironmental steady-
state or dynamic mass-balance model simulations, supplemented by information from empirical
databases.

3. Characterization of individual attributes (for IBEM applications), or selection of sample popula-
tions so as to statistically reproduce essential demographics (age, gender, race, occupation,
education) of the population unit used in the assessment (for PBEM).

4. Development of activity event sequences for each “actual” individual from study-specific data
(for IBEM applications) or for each “virtual” member of the sample population by matching her/
his attributes to entries of USEPA’s CHAD for PBEM applications.

5. Calculation of (inhalation, oral, etc.) intake rates for the actual or virtual individuals constituting
the sample population considered, based on the physiological attributes of the study subjects
and the specific activities pursued during the individual exposure events.

6. Combination of intake rates with the corresponding multimedia microenvironmental concentra-
tions of the contaminant, for each activity event, to assess exposures.

7. Estimation of target tissue doses (e.g., lung deposition and clearance of fine particles; kidney and
liver dose and elimination, etc.) through physiologically-based dosimetry and Physiologically
Based Toxicokinetic (PBTK) modeling.

The environmental, microenviromental, and biological process modeling tools (modules) available
within MENTOR are complemented by various modules for diagnostic model and data analyses.
These modules implement a variety of powerful novel techniques including, e.g., Bayesian model/
data fusion (“calibration”) methods that utilize highly optimized Markov Chain Monte Carlo sam-
pling; systematic mathematical model reduction to Fast Equivalent Operational Models (FEOMs) via
HDMR (High Dimensional Model Representation) methods; sensitivity/uncertainty analysis via
combined Surface Response Methods (SRSM) and Automatic Differentiation techniques; compara-
tive pattern recognition in field data and model outcomes, etc.

FIGURE 3. The MENTOR framework for assessing cumulative/aggregate exposures and doses for multiple multimedia contaminants.
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464 P. G. GEORGOPOULOS AND P. J. LIOY

The bidirectional nature of the MENTOR approach can in fact be used either prospectively or
retrospectively to establish the exposure/dose of concern; to support the analysis and evaluation of
data collected in field or laboratory studies; or to assist in designing new or augmenting current
experiments on toxicant characterization for the resolution of current or “old” problems. It can also
be used iteratively to characterize new problems that are evolving, or refine hypotheses on current
problems, as new or additional information becomes available.

Using the preceding discussion as a guide for understanding the basic philosophy and structure
of MENTOR, the following subsections describe the range of modeling tools that have been devel-
oped and are currently available. They further present information on selected applications, illus-
trating the progress made in implementing a probabilistic source-to-dose modeling system since the
publication of Georgopoulos and Lioy (1994).

MENTOR Modules – Process and Activity Models
Macroenvironmental models As mentioned in the introduction, MENTOR was designed to

operate in conjunction with widely used and tested environmental models for fate/transport in dif-
ferent media, such as Models-3/CMAQ (USEPA 1999b), CAMx (ENVIRON 2004), ISC/AERMOD
(USEPA 1998c), CALPUFF (Scire et al. 2000), MM5 (Grell et al. 1995; NCAR 2004), RAMS/
HYPACT (Walko et al. 1999; Walko and Tremback 2001), EPANET (Rossman 2000), MODFLOW
(Guiguer and Franz 1996), GMS (BYU 2003), FACT (Hamm and Aleman 2000), ARAMS (Dortch
and Gerald 2004), etc.

Priority was given in developing linkages and data transfer modules for environmental fate/
transport models included in USEPA’s list of the Council for Regulatory Environmental Modeling
(CREM) (USEPA 2005). In addition to developing modules that facilitate the coupling (“interopera-
bility”) of existing macroenviromental models with the various new computational components of
MENTOR, in many cases existing macroenviromental models have been adapted/customized for
addressing certain novel requirements and applications. For example, the RAMS/HYPACT system
was customized (and supplemented with new modules) for applications relevant to emission and
transport of contaminants from large fire events (that could alter locally the structure of the atmo-
spheric planetary boundary layer). As a specific example of such an application, an accidental or
intentional fire near a hazardous waste site (such as, e.g., nuclear weapons site of the USDOE com-
plex) was considered. Such a fire event could release, in a very short time, substantial amounts of
contaminants that have accumulated in the vegetation over a long time period (through various
processes of air deposition, root uptake, etc.). In order to address situations of this type, a prognos-
tic meteorological/dispersion model utilizing the RAMS/HYPACT platform was developed and cou-
pled with a forest fire propagation and contaminant emission model (Gurer and Georgopoulos
1998). Figure 4 demonstrates an application of the coupled fire/dispersion model to the conditions
of a prescribed fire experiment conducted on December 5, 1975 at the vicinity of USDOE’s
Savannah River Site (SRS).

Ecological food-web models In addition to developing linkages with environmental fate/trans-
port models, “interoperability modules” were developed for the utilization of information from sim-
ulations employing existing food-web models, such as CATS (Traas et al. 1996). Furthermore,
customized food-web models were developed to address the needs of special locales or situations
(Hunter et al. 2003).

Local multimedia environmental models Special effort has been given, during the MENTOR
development effort, on “customizing” environmental modules for the “local” or “subgrid” scale,
i.e., to specifically account for phenomena that are relevant to the spatial/temporal scales of human
exposure. These modules are mechanistically consistent with the regional models (discussed above)
describing the larger scales of environmental fate/transport, over different ambient scales. For exam-
ple, modules of aerosol physical and chemical processes, that are compatible with those used in
regional multiscale photochemical grid models, were developed and incorporated into local-scale
plume models. These models have higher resolution and can describe locally important gradients in
gas and aerosol concentrations. As a specific application example, sample results from a RPM-
AERO (Reactive Plume Model with AEROsol processes model) simulation, which incorporates state-
of-the art MENTOR modules for nucleation, condensation, dry deposition, gas/particle partitioning
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MENTOR 465

of organic matter, new particle formation, and secondary organic matter formation, are shown in
Figure 5. The figures illustrate the growth in mass, and the change in nucleation rate within a
plume. These estimates are applicable to a much finer spatial scale than grid-based models, and
they can be used subsequently to improve characterization of individual or population exposures at
local scales (Drossinos et al. 2001; Kevrekidis et al. 1999; Lazaridis et al. 2001b, 2005).

Microenvironmental models A series of modules describing the dynamics of microenviromen-
tal processes in a way consistent with the methods and assumptions employed in environmental
(“outdoor”) fate/transport models, were developed and incorporated in MENTOR. For example, in
the past, indoor microenvironmental models have not used the explicit chemical composition of
contaminated ambient air, as characterized by photochemical air quality models or ambient monitors,

FIGURE 4. 3-D Views of the smoke plume simulation (superimposed to the atmospheric boundary layer wind field) performed with an
adaptation of RAMS/HYPACT for a controlled fire that took place in the vicinity of USDOE’s Savannah River Site (from Gurer and Geor-
gopoulos 1998).

FIGURE 5. Sample calculations of aerosol-in-plume properties performed with the RPM-AERO model: (a) Nucleation rate (particles/
m3s) versus transport time (min) of plume for different initial SO2 concentrations corresponding to low (10 ppb), moderate (100 ppb) and
high (1 ppm) sources; (b) Comparison of the COC production potential due to emissions from vehicle and from oil industry emissions
(from Lazaridis et al. 2001b, used by permission).
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466 P. G. GEORGOPOULOS AND P. J. LIOY

to examine indoor chemical processes for secondary gas or particle formation and thus simulate
total indoor exposure to air pollutants. So, there has been a long-standing need for models of
indoor gaseous and aerosol physics and chemistry that are mechanistically consistent with outdoor
air quality models. In fact, there are important indoor chemical processes (such as the formation of
ultrafine aerosol from the interaction of ozone entrained from outdoors with volatile organics emit-
ted indoors, such as terpenes from household chemicals), which are not accounted for in existing
indoor air quality models. So, indoor physics/chemistry models were developed for use within
MENTOR that achieve compatibility with outdoor air quality models, and also account for physical
and chemical processes that are predominant in the indoor environment. In the end, the goal is to
use these models to reduce uncertainty in exposure/dose simulations and define the contributions
made from indoor/outdoor air.

As an application example, Figure 6 shows the estimated formation of ultrafine PM indoors due
to complex reactions between ozone entrained indoors and VOCs emitted indoors (including
α-pinene). This provides a basis for considering the significance of “fresh” aerosol exposure and
dose at times and locales that can augment outdoor contributions (Georgopoulos et al. 2002). On-
going work is testing the performance of the ozone-VOC indoor reaction mechanisms with data col-
lected in a controlled study of human exposure to products of the O3-VOC reactions (Fan et al. 2003).

Activity pattern/exposure event models To perform applications of MENTOR, and characterize
source-to-dose relationships for an actual or virtual “individual” the analyses must be capable of
tracking this individual consistently through his/her activities in space and time. Existing person-
oriented models typically focus on intake rather than uptake, and, except through empirical meth-
ods, do not calculate eliminated dose. Thus, there has been a need, as discussed by Georgopoulos
and Lioy (1994), to couple human activities, microenvironmental, and biological processes, in a
mechanistically consistent manner to estimate the dose received by a person. MENTOR tools in fact
automate many of the estimation steps involved, including dynamic/interactive linkage with activity
databases such as CHAD, for a PBEM application. For each simulated individual, the activity diary
(if not available from a case-specific study) is selected from CHAD based on the matching demo-
graphic attributes (age, gender, employment status, etc.). The METS (Metabolic Equivalent of Tasks)
values are then assigned for each activity event to calculate intake needs (such as inhalation rates,
water and food consumption). The PBEM framework utilizes an extensive but consistent set of
variables and information for source characterization, exposure factors, and human activity patterns

FIGURE 6. Simulation of (a) the growth of different components of the aerosol size distribution and of (b) gas phase concentration of
α-pinene, from household cleaning products, resulting from reacting with ozone entrained indoors (from Georgopoulos et al. 2002).
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MENTOR 467

to conduct population exposure assessment of multi-pollutants. This is a primary distinction from
previous studies of population exposure assessment, where different exposure factors and activity
patterns would be used for different pollutants due to the structure of the software algorithms and
codes used in these studies.

Biologically based dosimetry and toxicokinetic models To improve our understanding of con-
taminant intake, biologically-based dosimetry models must account explicitly for age, gender, as
well as physiology and activity variation, as these factors critically influence both the uptake and the
disposition/metabolism of xenobiotics. Such explicit consideration, on a “per-individual basis” helps
in identifying those subpopulations that may be at higher risk. To accomplish this, MENTOR provides a
hierarchy of alternative models, so that the appropriate level of detail, e.g., simple and fast screening
models or detailed models that require case-specific information, can be applied to a problem at hand.

Biological models that were developed for use in MENTOR include new modules for gas and
aerosol inhalation dosimetry that, for example, consider hygroscopic and chemically reactive aero-
sols, taking into account transformations that are compatible with the modeling of ambient and
indoor air. This allows building of a flexible inhalation framework which has explicit age and gender
dependence, for physiologically based pharmacokinetics of volatile and non-volatile contaminants
and for aerosol inhalation dosimetry. Considering the age-related issues for PM exposure and health
outcomes, these MENTOR modules can be used to improve our understanding regarding differen-
tial exposures/doses, and ultimately risks, for special subgroups of the general population. As an
example, Figure 7a shows sample calculations from a detailed (“IBEM-oriented”) inhalation dosim-
etry model that considers evolving hygroscopic particles of different sizes, while Figure 7b shows
predicted PM2.5 doses from a “PBEM-oriented” module also developed as part of MENTOR (Bro-
day and Georgopoulos 2001, Lazaridis et al. 2001a).

FIGURE 7. (a) Example of respiratory dosimetry module calculation in MENTOR: evolution of PM size distribution in the human respi-
ratory tract via 1D macromodeling. Fine hygroscopic PM concentration/size variation along the conducting airways of the human respi-
ratory tract (persistent vs. deposition) (from Broday and Georgopoulos 2001, used by permission) (b) Dependence of inhaled PM2.5
dose on gender, age, and activity (quantified by MET = Metabolic Equivalent of Tasks) estimated by a new simplified population-ori-
ented module of MENTOR. Calculations show the critical dependence of PM2.5 dose on factors such as the activity level of the individ-
ual and the size distribution of the fine particles (from Georgopoulos et al. 2004b).

D
ow

nl
oa

de
d 

by
 [

N
IH

 L
ib

ra
ry

] 
at

 0
9:

01
 1

2 
N

ov
em

be
r 

20
13

 



468 P. G. GEORGOPOULOS AND P. J. LIOY

In addition to providing modules with alternative descriptions of respiratory uptake processes,
both flow-limited and diffusion-limited PBTK modules for systemic contaminants have been imple-
mented in MENTOR (see, e.g., Figure 8). The availability of modules with such alternative formula-
tions – that are appropriate for contaminants with different physicochemical attributes and
exposures of widely different types – allows the exposure/risk assessor to develop simulations cus-
tomized to the specific case study at hand.

Dose-response models Dose-response modules currently available within MENTOR utilize
either empirical information from traditional toxicological studies or attempt to merge, in a quasi-
quantitative manner, available mechanistic characterizations of toxicity pathways or modes of
action with laboratory data (McGrath et al. 1996). Ongoing efforts focus on the incorporation of
molecular level methods and bionomic approaches (see discussion in “The Path Forward” section).

MENTOR Modules – Data Modules
Databases of environmental/microenvironmental quality and attributes, combined with activity,

demographics, etc. information are essential in MENTOR applications. Table 2 provides summary
information on a sample of the databases currently utilized by applications of MENTOR.

MENTOR Modules – Diagnostic Analysis Tools
Multiscale domain data import/export Environmental Information Systems (EIS, Gunther

1998) are appropriate for traditional environmental impact analyses; however, exposure assess-
ments require, in addition to environmental information, many levels of “receptor (i.e. human) ori-
ented” information (demographics, housing, activity diaries, food and water consumption data,
etc.) Structures that merge the Environmental Information System concept with information on
exposure routes/pathways and receptor attributes were developed to provide prototypes for the
next generation of information support systems for exposure analysis (Exposure Information Systems
or EXIS). Prototype EXIS were utilized within MENTOR for applications involving exposures to
arsenic, copper, and trichloroethylene. More specifically, these systems link exposure-related calcu-
lation modules with (1) databases for contaminant occurrence in a variety of media (drinking water,
food, air, etc.), (2) demographic and human activities databases, and (3) geodatabase “engines” that

FIGURE 8. MENTOR’s modular framework allows alternative biological descriptions: for example, alternative available human PBTK
models for arsenic include (a) flow-limited, and (b) diffusion-limited formulations (from Georgopoulos et al. 2005c).
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MENTOR 469

allow managing/assessing spatial information associated with the preceding data. The development
of the EXIS approach followed a recommendation and addressed a major need identified in Geor-
gopoulos and Lioy (1994).

Furthermore, human exposure is associated with conditions within microenvironments that
may include contaminants generated by sources or reactions that occur at multiple scales, from
regional to local to neighborhood to indoor. As discussed in Georgopoulos and Lioy (1994), to
examine human exposure, environmental information is needed at the local level for multiple (long
or short) time periods. This requires linking information and models for local and microenvironmen-
tal quality with the corresponding macroenvironmental (regional, urban) information and models,
in a computationally efficient manner. For example, in the case of regional air quality models, the
inputs and outputs are currently becoming available for annual simulations (Graham and McCurdy
2004; Georgopoulos et al. 2005), but are only available at coarse grid resolutions, so there exists a
need to simulate smaller space/time domains at higher resolutions for the exposure analysis. The
coupling of prognostic and diagnostic atmospheric modeling within MENTOR has allowed the com-
putationally efficient development of meteorological inputs for mid- and long-term application (sea-
sonal/annual) of multiscale photochemical ambient air quality models. The effectiveness and
usefulness of coupling prognostic and diagnostic meteorological models for producing high resolu-
tion wind fields in an efficient manner was demonstrated in practice by coupling “coarse outputs”
from the prognostic model MM5 (a component of the Models-3 system) with the diagnostic wind
model CALMET to generate fine resolution meteorological inputs for exposure oriented air quality
modeling. Results show that fine resolution (4 km) wind fields produced by the diagnostic model
using 36 km prognostic fields as inputs are of comparable accuracy to 4 km resolution prognostic
fields (Chandrasekar et al. 2003). Such analyses are used in on-going studies to complete PBEM
estimates for seasonal and annual applications.

Integrated efficient sensitivity/uncertainty analysis Quantitative characterization of uncertain-
ties is critical in the source-to-dose modeling process, and traditional Monte Carlo methods (includ-
ing Latin Hypercube Sampling) may not be feasible or practical when the models employed are
complex (e.g. multidimensional dynamic numerical models) or the number of cases (e.g. for simula-
tions involving large numbers of virtual individuals) that need to be computed is very large. Thus,
there is a critical need for computationally efficient methods for performing distributional/uncer-
tainty analysis. In response to this need, the Stochastic Response Surface Method (SRSM) was devel-
oped for efficient analysis of uncertainty propagation (Isukapalli et al. 1998). Furthermore, when
the models used are coded in either Fortran or C, further efficiencies can be obtained by applying
SRSM in combination with sensitivity analysis software (ADIFOR/ADIC) employing automated dif-
ferentiation of computer code, developed at Argonne National Laboratory (Bischof et al. 1994).
The SRSM method was utilized in various applications, including atmospheric chemistry and trans-
port models, physiologically based toxicokinetic models, ground water flow and contaminant trans-
port models, etc. The results indicate that the SRSM approach shows close agreement with
“traditional” Monte Carlo uncertainty analysis results, while requiring a significantly lower number
of model runs (Balakrishnan et al. 2002, 2003, 2005).

Variability characterization For exposure assessment purposes, ambient pollutant concentra-
tion information available at a local level (such as census tract or neighborhood) needs to be used as
input to microenvironmental models for the estimation of population or individual exposures.
However, typical field monitoring data, and associated regional environmental quality model esti-
mates, provide spatial characterizations of concentration fields at “grid” levels that are too coarse
for exposure characterization; so there is a need to further characterize local “subgrid” variability,
with “subgrid” referring to resolutions in space that are higher than those typically provided by
numerical models and/or monitor networks. To provide such resolution, Spatio-Temporal Random
Field (STRF) methods were incorporated in MENTOR for characterizing local (subgrid) variability of
ambient properties (including contaminant concentrations). These modules were designed and
tested for the optimal interpolation of values modeled on a regular grid or monitored at irregular
observation locations and also for incorporating local (“subgrid”) effects from observations in the
modeled estimates by “fusing” modeling with available “hard” (measurements) and “soft” (ranges)

D
ow

nl
oa

de
d 

by
 [

N
IH

 L
ib

ra
ry

] 
at

 0
9:

01
 1

2 
N

ov
em

be
r 

20
13

 



470 P. G. GEORGOPOULOS AND P. J. LIOY

information. The STRF approach (Christakos and Vyas 1998a, 1998b; Vyas and Christakos 1997)
interpolates information and/or data in space and time simultaneously. This method can adjust for
information on “temporal trends”, which cannot be incorporated directly in purely spatial interpo-
lation methods such as standard kriging. Furthermore, the STRF method can optimize the use of
data that are not uniformly arranged in either space or time. STRF was extended into the Bayesian
Maximum Entropy (BME) framework (Serre 1999; Serre and Christakos 1999; Christakos and Serre
2000) that has also been incorporated in MENTOR.

As an example, STRF and BME-based methods were employed to optimally interpolate com-
bined spatial and temporal information from both environmental quality model outputs and from
data obtained by monitoring networks. Figure 9 shows fine scale (<3 km) interpolation of ground-
water monitor data preferred to develop hydraulic conductivity parameters that are needed to run
groundwater models at a local scale (Georgopoulos et al. 2004b, 2005; Vyas et al. 2004).

Bayesian model/data assimilation Georgopoulos and Lioy (1994) highlighted the need to
invest in the development of tools for rapid optimization of modeling results. It is well known that
uncertainty in model parameters can be reduced by optimal parameter estimation or “calibration”
using laboratory and field data. For models with few parameters this can be done by traditional sta-
tistical methods (such as maximum likelihood.) However, for complex models that involve multiple
correlated parameters, more flexible techniques are needed. Bayesian Markov Chain Monte Carlo
(BMCMC) techniques offer a very promising alternative for optimal parameter estimation (as well as
“input reconstruction” in “inverse problems”), and a set of BMCMC simulation support modules
was developed for MENTOR. Furthermore, since MCMC techniques can be very computationally
demanding when the models employed are complex, as they require several thousands of model
runs, a new approach was developed that couples MCMC with SRSM to achieve faster convergence

FIGURE 9. Map of local scale estimates of horizontal hydraulic conductivity (a) means and (b) variances, for the Kirkwood-Cohansey aqui-
fer in New Jersey, using data provided by NJDEP and obtained from USGS Regional Aquifer-System Analysis (RASA) Reports: the local scale
interpolation employed Bayesian Maximum Entropy (BME) techniques within MENTOR (from Vyas et al. 2004, used by permission).
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MENTOR 471

of MCMC estimates. The BMCMC tools of MENTOR were applied to PBTK modeling of benzene,
and to finite element groundwater transport and fate modeling, in combination with SRSM
(Balakrishnan et al. 2003).

Treatment of missing data The problem of rational and systematic handling of “missing” data
(including those resulting from monitor/sensor failures, from levels below detection limits, etc.) is
very important in almost every environmental application field. As a specific new example of this
type of problem, DNA microarray technology led to an explosion of gene expression data
(including – and forthcoming – data representing responses to environmental stressors). However,
virtually every experiment contains missing entries arising from blemishes on the microarray, and
values of missing entries must be estimated before analytical methods such as clustering can be
applied.

In response to this problem an improved missing value estimation method was developed; it is
based on Gaussian mixture modeling, and was shown empirically to be more accurate than existing
methods. A computational implementation of this method was incorporated as a stand-alone mod-
ule of MENTOR (Ouyang et al. 2004).

Systematic model reduction A special focus of the MENTOR project has been on the devel-
opment and implementation of algorithms for sensitivity analysis that can provide information for
the systematic simplification of complex models and “construction” of Fast Equivalent Opera-
tional Models (FEOMs). Traditionally, two classes of approaches are applied to perform sensitiv-
ity/uncertainty analysis: perturbative sensitivity analysis and Monte Carlo sampling (Saltelli et al.
2000). In both cases the model input variables are characterized by distribution functions and the
goal is to calculate the mean and variance of the target model output. Within MENTOR, SRSM
provides an efficient way for implementing these approaches. Furthermore, the High Dimen-
sional Model Representation (HDMR) method, developed by Rabitz and coworkers (Rabitz and
Alis 1999; Li et al. 2001; Wang et al. 2003), provides a new family of tools (also coded in the
MENTOR toolbox), available for sensitivity analysis and subsequent development of simpler, fast,
but accurate “substitute” models (FEOMs). The HDMR method provides a “global” understand-
ing of which model variables are significant in a dynamic system, and how they are interrelated
within the system. For a complex model with several parameters/inputs, it is important to identify
those with the greatest effect on the model outputs. Applications of HDMR within MENTOR
include atmospheric chemistry modeling; groundwater flow modeling; PBTK modeling (arsenic);
and coupled multimedia microenvironmental and PBTK modeling (TCE). Sample results, shown
in Figure 10, depict the successful development of a FEOM for calculation of arsenic, employing
using physiologically based toxicokinetics, for use in population exposure assessments. The
FEOM calculation is about 80 times faster than the original arsenic PBTK model, while producing
very similar dose distributions of model outputs (Li et al. 2001, 2003a, 2003b; Wang et al. 2003,
2005; Georgopoulos et al. 2005c).

Diagnostic database and model analysis and evaluation Databases that resulted from compre-
hensive (“multidimensional”) exposure studies, such as NHEXAS, include a number of highly corre-
lated variables. Further, they include a large number of both continuous and categorical variables,
whose observations are often below the detection limits. Comprehensive exposure models, such as
the available computational implementations of MENTOR (e.g. MENTOR/SHEDS-1A and MENTOR/
SHEDS-4M) produce outputs of similar complexity as the above studies, but much larger in data-
base size. Clearly, traditional statistical techniques are often not sufficient for analyzing these data-
bases, and thus there is a need to develop and/or apply novel analysis techniques. Existing methods
such as Classification And Regression Tree (CART), and new methods developed by the MENTOR
group, based on HDMR, were incorporated in the MENTOR toolbox for application to complex
exposure databases.

Figure 11a and b show application of CART and HDMR methods to the analysis of NHEXAS
Region-V data: they were used to identify patterns relating arsenic levels in exposure media (food,
water, air, dust) and in biomarkers (urine) and to corroborate the analysis of predictive MENTOR-
based modeling (Roy et al. 2003; Georgopoulos et al. 2005c).
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Applications of MENTOR
Mechanistic source-to-dose analysis of exposure assessment for co-occurring fine airborne PM, 

ozone, and air toxics There is a critical need to characterize cumulative/aggregate exposures and
doses of co-occurring air pollutants such as ozone, PM, and air toxics; however this must be done
in a mechanistically consistent manner in order to quantify (the often nonlinear) source-to-dose
relationships. MENTOR has been used to couple together existing USEPA models and methods
while at the same time filling gaps in the source-to-dose sequence (an “added value” approach to
source-to-dose modeling).

In the Philadelphia case study (Georgopoulos et al. 2005a, 2005b) the following models were
employed within MENTOR: the MM5 mesocale prognostic meteorological model (a component of
USEPA’s Models-3); the Sparse Matrix Operator Kernel Emissions (SMOKE) emission inventory pro-
cessing system (a component of Models-3); the Models-3/CMAQ multiscale photochemical air
quality model; MENTOR’s tools for optimal spatiotemporal interpolation of ambient PM and ozone
concentration estimates from Models-3/CMAQ at the census tract level; USEPA’s SHEDS modeling
methodology, recoded/adapted in the MENTOR framework and interactively linked with USEPA’s
CHAD; and MENTOR’s novel age, gender, and activity dependent inhalation dosimetry modeling
components for population exposures. Demonstrations were completed for the city of Philadelphia,
PA by Georgopoulos et al. (2005a; 2005b), for a two-week period during the summer of 1999 and
for the full year of 2001. Example simulation results presented in Figure 12a and b show that indoor
sources dominate contribution to the total doses of PM2.5, while the time spent outdoors domi-
nates contributions to total doses of O3 at higher percentiles.

FIGURE 10.  Application of a Fast Equivalent Operational Model (FEOM) developed via High Dimensional Model Representation
(HDMR): comparison of trivalent arsenic (AsIII) dose distributions calculated by a “full” As-PBTK model and an HDMR reduced model
for a population of 1000 people (from Georgopoulos et al. 2005c). The predicted distributions of target tissue (liver and kidney) doses
from the two approaches are practically indistinguishable.
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MENTOR 473

FIGURE 11. (a) An example of using Classification and Regression Tree (CART) to identify patterns in the NHEXAS Region-V data for
arsenic in exposure media (food, water, air, dust) and biomarkers (urine), to corroborate the analysis of predictive MENTOR modeling
(Georgopoulos et al. 2005c); (b) Comparison of cumulative distributions of total arsenic in urine concentrations (μg/L) calculated with
the High Dimensional Model Representation (HDMR) method and with log linear regression, both using the measured multimedia (air,
soil, dust, food, and beverage) exposure data as the predictors, versus the corresponding NHEXAS Region-V measurements (unpublished
results).

D
ow

nl
oa

de
d 

by
 [

N
IH

 L
ib

ra
ry

] 
at

 0
9:

01
 1

2 
N

ov
em

be
r 

20
13
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Evaluation of alternative regional ozone (and PM) control strategies and alternative formulations
of air quality standards via population exposure metrics Human exposure is “the one and only ele-
ment that can link “risk assessment” to “risk management” to “accountability” when the objective is
to protect human populations (not only the general population, but also the susceptible populations
and the highly exposed populations) from environmental contaminants” (Foley et al. 2003). There-
fore, there is a need to evaluate emission control strategies from the perspective of population
exposures. Tools associated with MENTOR have been coupled with Models 3/CMAQ to calculate
various potential outdoor exposure estimates for populations, appropriate for evaluating emission
control strategies. This allows assessing the effect of a proposed emission control strategy not only
on ambient air pollution levels but also on related population exposures. Simulations performed
using Models 3/CMAQ in MENTOR, focusing on the Eastern United States for the summer of 1999
(Figure 13), show that emission control strategies aiming to meet the 8-hr ozone standard (NOx
intensive) are also effective in reducing potential population exposures to ozone (Foley et al. 2003;
Purushothaman and Georgopoulos 1999a, 1999b).

Assessment of multisource/multipathway exposures of individuals and populations to inorganic
and organic arsenic To understand and quantify the contribution of different sources to the mul-
tipathway exposures and doses involving multimedia contaminants one must complete complex
analyses that, by necessity, address the presence of contaminants simultaneously in food, water, air,
soil, etc. A prototype source-to-dose application of MENTOR was developed and applied to under-
stand the significance of different pathways on arsenic exposures. The analyses combined and
extended the SHEDS approach in a multimedia framework that is part of MENTOR and dynami-
cally link the modules that calculate exposure-related metrics with physiologically based calcula-
tions of the toxicokinetics of different forms of arsenic. This system incorporates comprehensive
relational databases and geodatabases of environmental, microenvironmental, demographic, and
human activities indicators.

Prototype source-to-dose assessment case studies were performed for populations in New Jer-
sey, Arizona and Ohio. A unique aspect of the MENTOR/SHEDS-4M study of arsenic exposures
was that it took a major step beyond any previous similar analysis, by calculating target tissue dose
(and corresponding biomarker levels) with PBTK modeling for the entire population considered.

FIGURE 12. Cumulative distribution functions of (a) PM2.5 total doses, doses from outdoor sources, and doses from indoor sources;
(b) O3 total doses, doses due to time spent outdoors, and doses due to time spent indoors. The distributions were developed by applying
MENTOR to 482 census tracts in the urban Philadelphia area; results are shown for July 19, 1999. 500 “virtual individuals” were simu-
lated for each of the 482 census tracts used in the study. Models-3/CMAQ predictions interpolated to census tracts via MENTOR’s
Spatio-Temporal Random Field (STRF) modules were used as outdoor concentrations. The doses were calculated using MENTOR’s age,
gender, and activity dependent respiratory dosimetry modules (from Georgopoulos et al. 2005a, used by permission).
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Such applications of MENTOR/SHEDS-4M offer the advantage of allowing model evaluation against
biomarker field measurements. Indeed, the exposure-to-dose modeling components of MENTOR were
evaluated by comparing distributions of the total arsenic amounts in urine estimated for the residents of
Franklin County, Ohio with those derived from biomarker measurements collected through the
NHEXAS Region-V study for that County. As shown in Figure 14a the distributions of biomarker levels
calculated from MENTOR and from the NHEXAS measurements are within a factor of 5 or less. Given
the uncertainty involved in the source-to-dose estimation procedure, this agreement should be consid-
ered satisfactory. Furthermore, Figure 14b shows the contribution of individual pathways to exposure
(intake): food intake and drinking water consumption routes appear to be the major pathways for the
total arsenic exposure (with food dominating even for inorganic arsenic), while the nondietary and inha-
lation routes act as minor contributors to the total exposure (Georgopoulos et al. 2005c).

Microenvironmental characterization and control of potential secondary emissions and impact of
Chemical Warfare Agents There is a need for developing appropriate emergency response plans
for receiving victims from emergency events including toxic chemicals (such as chemical weapons
agents) and simultaneously protecting healthcare professionals. Such plans should include protocols
and standards for personal protective equipment (PPE) for healthcare workers.

As an example, MENTOR provides tools that can be used for probabilistic assessment of poten-
tial exposures in the case of a release of a toxic chemical or a Chemical Warfare Agent (CWA).
Thus, comprehensive scenarios can be modeled with likely distribution estimates for the “second-
ary” release of contaminants from the victims and provide estimates of possible exposures to emer-
gency responders and healthcare workers. As a specific case study, Figure 15a shows a plausible
distribution of mass deposition on victims from the hypothetical release of sarin, and Figure 15b
shows the corresponding calculated integrated total exposure of healthcare workers to sarin as

FIGURE 13. Relative effectiveness of “across-the-board” (a) “NOx-intensive” versus (b) “VOC-intensive” source emission controls in
reducing daily maxima of 8-hour average ambient ozone concentrations, and (c) comparison of both controls in reducing potential out-
door ozone population exposures. (“NOx-intensive” controls refer to a hypothetical 75% reduction of all NOx emissions and 25%
reduction of all VOC emissions in the modeling domain; “VOC-intensive” controls refer to 75% reductions in VOC and 25% in NOx
emissions). “NOx-intensive” controls were found to be more effective in both reducing maxima of ambient concentrations and for
reducing potential population exposures at levels above the 1 and 8-hour ozone standards (from Foley et al. 2003, used by permission).
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476 P. G. GEORGOPOULOS AND P. J. LIOY

FIGURE 14. (a) Comparison of cumulative distributions of total arsenic amount in urine predicted from MENTOR/SHEDS calculations
and observed in NHEXAS measurements for six age groups in Franklin County, OH. (b) Cumulative arsenic (total and inorganic) exposure
distributions from inhalation, food intake, drinking water consumption, and non-dietary routes for Franklin County, Ohio (calculated
with the MENTOR/SHEDS population based model) (from Georgopoulos et al. 2005c).
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contaminated patients file past them following the incident. These simulations were used to
develop guidelines for decontaminating patients exposed to a CWA prior to entering an emergency
room facility, including identification of optimal Personal Protection Equipment (PPE) level for the
emergency response personnel, for different stages of the decontamination process (Fedele et al.
2003; Georgopoulos et al. 2004).

Reconstruction of the plume from the World Trade Center fire and collapse following the terrorist
attack of 9/11/2001 (a collaborative effort of EOHSI and USEPA-NERL) In the aftermath of the
attack on the World Trade Center, it became apparent that there was a need to understand the
extent and patterns of exposures associated with the release of gaseous and particulate contami-
nants from the collapse and the fires that followed for use in epidemiological investigations and risk

FIGURE 15. (a) Frequency density of initial mass deposition (m0) of sarin on to victims of a hypothetical situation involving the release of
a Chemical Warfare Agent (CWA). This distribution describes the frequency with which victims will be contaminated with a specific
amount of sarin, assuming a uniform “density” of people where the likely mass deposition of the CWA decreases as the radial distance
increases from the dissemination device. (b) Monte Carlo forecast of total integrated exposure concentration (CT) of sarin when a triangu-
lar distribution represents the mass deposition (m0). The time-integrated exposure concentration is the sum of exposure concentration as
contaminated patients file past medical personnel. The contaminated body surface area is assumed to be 20%, which represents a poten-
tial exposure to healthcare workers when victims immediately disrobe (from Georgopoulos et al. 2004, used by permission).
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assessments. A plume reconstruction using the RAMS/HYPACT system was performed as a first step
in the effort to support future studies requiring exposure estimates for various segments of the pop-
ulation. Figure 16 shows the instantaneous “snapshots” of the simulated plume at 13:00 EDT on 9/
11, 12, & 13. Currently, the results are being tailored to construct exposure profiles for individuals
that may have come in contact with the plume from during the first days to one month after the
attack. (Lioy et al. 2002; Lioy and Georgopoulos 2003; Georgopoulos 2003; Offenberg et al. 2004;
Wolff et al. 2005).

The Path Forward
In order to enhance “bi-directional” source-to-dose analyses of exposure and biologically effec-

tive dose, state-of-the-art Computational Toxicology methods (ebCTC 2005) are now being cou-
pled with MENTOR, as depicted schematically in Figure 1. Such methods are expected to provide
new computational tools and quantitative metrics on the potential of chemicals to affect biochemi-
cal pathways of concern in the sequence from source-to-dose-to-effect and vice-versa. Included are
biologically based toxicokinetic modules and the linkages with quantitative characterization of the
toxicodynamic processes for contaminants (USEPA 2003). Computational toxicology methods are
expected to provide better characterizations of chemical transformation and metabolism, better
diagnostic/prognostic molecular markers, improved dose metrics, characterization of toxicity path-
ways by using genomics, proteomics, metabonomics, etc. data.

The current version of the MENTOR toolbox incorporates various methods and computational
tools needed for PD and PBTK modeling for individuals and populations. Included are (1) uncer-
tainty and intra- and inter-individual variability characterization of biological disposition processes;
(2) Bayesian model/data fusion methods for PBTK models; (3) analysis of biomarker exposure and
effect data; and (4) analysis of gene expression microarray data. Planned expansion of the MEN-
TOR toolbox will eventually couple with state-of-the-art tools of computational chemistry, with
focus on Quantitative Structure Activity Relationships (QSARs), and cellular/molecular level systems
biology; these topics were not covered in Georgopoulos and Lioy (1994) but are becoming of criti-
cal importance with advances in bionomic technologies and data.

Because MENTOR is designed to facilitate the set-up and performance of source-to-dose simu-
lations, various tools were or are being developed specifically to provide compatible/consistent
analysis that will couple with modeling frameworks for computational toxicology. The intent is to
reduce uncertainties in dose estimations that can be used to better understand the implications of
exposure within the source-to-effect continuum (sequence) described by Lioy (1990, 1999).

Gene expression data can be analyzed through a variety of methods that include: quality filter-
ing (eliminating low quality spots or expression data); normalization (allowing cross-experiment
comparison); statistical analysis (identifying differentially expressed genes between treated/exposed
and control samples); clustering (discovering gene clusters and coexpressed genes); and classifica-
tion (constructing predictive models based on gene expression profiles and “marker” gene identifi-
cation). Clustering represents a classical approach of “unsupervised learning” and is based on the
hypothesis that genes in a cluster share similar functions to identify functions for uncharacterized
genes or coexpressed genes. Classification represents “supervised learning” and is generally based
on the construction of an empirical model based on a set of samples with known endpoint and
gene expression data; then the endpoint for an unknown sample is predicted based on its gene
expression data using the model. Various classification approaches are available, including Soft
Independent Modeling of Chemical Analogy (SIMCA); Artificial Neural Network (ANN); K-Nearest
Neighbor (KNN); Decision Tree Methods; Support Vector Machines (SVMs); Fisher’s Linear
Discriminant (FLD); etc. Most methods generate similar results.

Quantitative Structure Activity Relationships (QSARs) are conceptually based on the “similar
property” principle which states that chemicals with similar structures are likely to exhibit similar
biological activities. The general procedure in applying QSAR involves two steps: characterization
of the molecules under investigation using computational, chemical, and biological methods, and
application of chemometric approaches to explore data patterns or to establish the relationships
between structure and activity (or property). QSAR methodologies generally include a three-level
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MENTOR 479

FIGURE 16. Instantaneous views (3-d, left; surface layer normalized concentrations, right) of the World Trade Center plume location
and extent, simulated using the RAMS/HYPACT prognostic meteorological and particle dispersion models (from Huber et al. 2004, used
by permission).
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480 P. G. GEORGOPOULOS AND P. J. LIOY

characterization of (a) chemical structure, (b) physicochemical properties, and (c) biological activity.
The ongoing coupling of QSAR techniques with MENTOR will be used to (1) reveal linear and non-
linear structure-activity relationships and handle both small or large, and “noisy”, data sets (e.g.,
Robust Polynomial Neural Network (RPNN) approach); (2) capture ligand-based and receptor-
based information, without requiring reformulation as more biological data become available (e.g.,
Shape Signatures approach); and (3) detect patterns in diverse sources of data including biological
(e.g., microarray), chromatographic, and spectral sources (e.g., Pattern Recognition Toolkit).

CONCLUSIONS

Since the 1994 publication of the conceptual framework for source-to-dose modeling of expo-
sures to contaminants, the Computational Chemodynamics Laboratory of EOHSI (http://
ccl.rutgers.edu has been able to systematically develop, and demonstrate through case studies, an
open computational toolbox (MENTOR) that can assist in analyzing a range of environmental health
issues. This toolbox has achieved the basic recommendations set forth by Georgopoulos and Lioy
(1994). In addition, it has begun to incorporate new methods for analyzing genomic and other
molecular level data to improve dose estimation. MENTOR can be used to build integrated systems,
that link the results of studies in various disciplines, to obtain a multifaceted understanding of envi-
ronmental health problems. In particular MENTOR addresses the need for customized systems,
from screening to comprehensive, which can be applied to address multimedia aggregate and
cumulative exposure route issues. The examples presented in this manuscript illustrate the wide
diversity of problems that have been studied using MENTOR. Finally, MENTOR has demonstrated
that incorporation of both existing and new models within a unified probabilistic source-to-dose
system can be used to develop and evaluate applications and achieve results faster than through the
traditional development of new models.
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